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41. UPPER BOUNDS FOR MODULI OF CONTOUR INTEGRALS

Theorem

Let C denote a contour z = z(t) (a <t <'b). Let M be a non-negative

constant such that [f(z)] < M. Then J f(z)dz| <ML, where L is the
C

length of the contour.



Proof

We know that
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. For any non-negative constant M such that the values of f on C

satisfy the inequality |f(z)| < M.

j f(z)dz| < M]Zz'(t) dt
C a



.. The integral on the right here represents the length of L of the contour, it

follows that the modulus of the value of the integral of f along C does not

exceed ML.

. I f(2)dz| <ML.
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Example 1
Let C be the arc of the circle | z | =2 from z = 2 to z = 21 that lies 1n the

z+4 6
first quadrant prove that dz < —
3 1 7




Solution
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If z1s a point on C, then | z | = 2.
Now |z+4|<|z|+|4|=2+4=6
Now [z’ = 1> || 2" |-|1]| =18 1| =7
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We know that <ML
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Example 2 Given that Cy is the semicircular path z = Re” (0 <0 < 1) and

7' denotes the branch 7' = yre® (r>0, —721<9<32nj of the square root

function. Without actually finding the value of the integral, show that
)
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lim dz=0.
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Solution
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Given|z| =R>1.
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Now,
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.. At points on Cg,
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The length of Cy is L = nR.
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lim f dz=0




