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Theorem 

 Let C denote a contour z = z(t) (a  t  b).  Let M be a non-negative 

constant such that |f(z)|  M. Then  dzzf )(   M L, where L is the 
C

length of the contour. length of the contour. 
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Proof Proof 

 We know that  
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  For any non-negative constant M such that the values of f on C 

satisfy the inequality |f(z)|  M.  satisfy the inequality |f(z)|  M.  

   

b
dttzMdzzf )()(     

a

dttzM

C

dzzf )()(  

3



 The integral on the right here represents the length of L of the contour, it 

follows that the modulus of the value of the integral of f along C does not 

exceed ML.  

   dzzf )(   ML.    
C

dzzf )(   ML.  

C
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Example 1 Example 1 

 Let C be the arc of the circle | z | =2 from z = 2 to z = 2i that lies in the 

first quadrant prove that 
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Solution Solution 

 

 
 If z is a point on C, then | z | = 2.   If z is a point on C, then | z | = 2.  

 Now | z + 4 |  | z | + | 4 | = 2 + 4 = 6  

 Now |z3 – 1|  |1||z| 3   = |8 – 1| = 7   Now |z3 – 1|  |1||z| 3   = |8 – 1| = 7  
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Example 2 Given that CR is the semicircular path z = R ie  (0    ) and Example 2 Given that CR is the semicircular path z = Re  (0    ) and 

z1/2 denotes the branch z1/2 = 2
i
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function.  Without actually finding the value of the integral, show that 
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Solution Solution 

 

 
 Given | z |  = R > 1.  



 Now,   
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= RiR 

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 |z2 + 1|  ||z2|  1| = R2  1.  |z  + 1|  ||z |  1| = R   1. 
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The length of CR is L = R.  
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